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Summary. The purpose of the topological theory of Chemical Bonding is to provide a mathematical

bridge between chemical concepts, such as bonds and lone pair, and rigorous Quantum Mechanics. The

theory of dynamical systems enables to achieve a partition of the geometrical molecular space into

basins of attractors bearing a chemical significance. A one to one correspondence is established

between these basins and the chemical objects used to describe the bonding. The definition of

population operators gives access to quantitative information and provides a firm basis for the concept

of mesomery.
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Introduction

The celebrated mathematician and philosopher of Sciences René Thom said that he
was not interested by Chemistry because concepts such as those of bond, valence,
lack of scientific content [1]. By this statement he pointed out that the description
of the matter at the microscopic level made by Chemistry was not as satisfactory as
claimed by the community. Many of the related concepts are very difficult to
define, for example the definitions of the chemical bond proposed by Lewis [2]
(‘‘two electrons thus coupled together, when lying between two atomic centers, and
held jointly in the shells of two atoms, I have considered to be the chemical bond’’)
or by Pauling (‘‘there is a chemical bond between two atoms or groups of atoms in
case that the forces acting between them are such as to lead to the formation of an
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aggregate with sufficient stability to make it convenient for the chemist to consider
it as an independent molecular species’’) [3] rely on beliefs rather than directly on
facts.

In spite of its epistemological weaknesses, the concept of chemical bond
derived from Lewis’s rule of two is essential in Chemistry because it provides a
simple, efficient and robust tool enabling to predict as well as to explain the
stoichiometry and the structure of almost all chemical systems in the ground state.
The Lewis’s approach complemented by the VSEPR model [4–9] plays a very
important role in Chemical Education. It is worth noting that the success of the
valence and VSEPR models do not rely at all upon any underlying mathematical
theory and indeed it seems to invalidate any reductionist attempt to derive Chem-
istry from Quantum Mechanics since the chemical bond is not a physical observ-
able and therefore has no counterpart in Quantum Mechanics. As pointed out by
Malrieu and Maynau ‘‘La Chimie est moins une science de la régularité qu’une
science des spécificités et de leur combinatoire, une science de la différence, de
cette petite différence qui sépare un composé d’un composé faiblement substitué,
ou d’un isom�eere.’’a [10]. In other words, Chemistry has its own concepts, its own
level of understanding which explains the properties of the matter from its com-
position in terms of elements and of their position in the periodic table rather than
from physical laws mastered by the Schr€oodinger equation. Though we are con-
scious of the dangers of the temptation of reductionism, which at the end leads to
throw away without further ado essential ‘‘prequantum’’ concepts of Chemistry
such that of mesomery (according to W. Kutzelnigg [11]: ‘‘The ‘‘theory of
mesomerism’’ survived for a while because it was regarded as a mapping to sim-
plified quantum chemical model, that of the semi-empirical valence-bond theory,
until both the former and the latter became obsolete’’), it is one of our tasks as
theoretical chemists to build (when it is possible) a rigorous bridge between Chem-
istry and Quantum Mechanics.

A possible route to reach this goal has been proposed by Dirac in the last
sentence of his 1929 paper ‘‘Quantum Mechanics of Many-Electron Systems’’
[12]: ‘‘It therefore becomes desirable that approximate practical methods of apply-
ing quantum mechanics should be developed, which can lead to an explanation of
the main features of complex atomic systems without too much computation.’’ This
prescription has been anticipated two years before Dirac’s paper by Heitler and
London [13] on the one hand and by Condon [14] on the other hand. Heitler and
London’s paper was immediately recognized as a milestone in the history of chem-
istry. Here was found the mathematical dynamic formulation of Lewis’ covalent
bond, the energy of the electron pair bond being given as a resonance energy due to
the interchange of two electrons. As pointed out by Pauling [15]: ‘‘Condon’s
treatment is the prototype of the molecular-orbital treatment that has been exten-
sively applied in the discussion of aromatic and conjugated molecules, and Heitler
and London’s treatment is the prototype of the valence-bond method.’’ These two
methods constitute the backbone of the theory of chemical bonding. In the abstract
of a recent paper Hoffmann, Shaik, and Hiberty write [16] ‘‘Quantum Mechanics

a Chemistry is less a science of regularity than a science of specificities, of this small difference which

distinguish a chemical compound from another weakly substituted or from an isomer
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has provided Chemistry with two general theories, valence bond (VB) and molec-
ular orbital (MO) theory. The two theories were developed at about the same time,
but quickly diverged into rival schools that have competed, sometimes fervently, on
charting the mental map and epistemology of chemistry.’’ These methods have
proved their efficiency in both predictive and interpretative purposes. However,
the interpretative toolbox mostly relies on the interpretation of the approximate
wave function in terms of its atom related components rather than upon observable
quantities. For example, the orbital representation implies an arbitrary choice
because orbitals are not invariant with respect to unitary transformations and the
relationships with chemical concepts are therefore not always obvious, all the more
so that orbitals are often considered in the vocabulary as real physical objects. As
pointed out by Coulson [17]: ‘‘This epistemological difficulty is mostly due to the
weakness of interpretative methods that give a physical significance to quantities,
such as molecular orbitals or valence bond structures, appearing as intermediates
during the course of solution of the many-body Schr€oodinger equation.’’

With the exception of seldom explicitly correlated wave functions such as that
of James and Coolidge for dihydrogen [18], the VB and MO techniques have been
for decades the unique methods enabling electronic calculations of many electron
systems. Incidentally, we remark that the James and Coolidge wave function has
not given rise to any class of interpretative methods. With the advent of the Density
Functional Theory in 1964 [19], a third predictive method grown in importance, in
a first step in Physics and in a further step in Chemistry (as soon as it was imple-
mented in the Gaussian softwares [20]). With respect to the understanding of the
bonding and of the reactivity of molecules, the Density Functional Theory has
enabled to improve the scientific content of many concepts used by chemists
(for a review see the review article of Geerlings et al. [21] and references herein).
The first Hohenberg-Kohn theorem [19] states that a given ground state electron
density distribution �ðrÞ corresponds to a unique number of electrons N and exter-
nal potential (i.e. distribution of nuclei) which contains the whole chemical infor-
mation. Moreover, according to the second Hohenberg-Kohn theorem the energy
and the electron density can be directly obtained by solving the Euler-Lagrange
equation of DFT and in principle the calculation of the wave function may be
skipped as well as orbital expansions. Another attractive technique, the Quantum
Monte Carlo method, has emerged during the thirty last years (for a comprehensive
presentation of QMC applied to Chemistry see the book of Hammond and Lester
[22]). Most of the interpretative techniques issued of the VB and MO approaches
cannot be imported in the Monte Carlo framework because they rely on atomic
basis functions.

In order to overcome these difficulties and to dispose of a general method of
interpretation, it is necessary to build up a mathematical model of the chemical
description of the matter, which is consistent with the postulates of Quantum
Mechanics, valid for exact wave functions and therefore independent of the way
of calculation of this latter or of an approximate one. This mathematical model is
not unique because different spaces (geometrical direct space, momentum space,
Hilbert space) as well as different mathematical theories external to Quantum
Mechanics can be used for this purpose. The representation of the bonding in
the geometrical space presents many advantages because chemists as more than
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99.99% of human beings including crystallographers usually think in it. Recovery
of the Lewis’s ideas from Quantum Mechanics in the geometrical space requires
the help of an external mathematical theory enabling the analysis of a local func-
tion derived from density distributions and carrying the chemical information. The
Loges theory of Daudel [23–27] make use of Shannon’s information theory [28] in
order to find the best partition in adjacent regions which minimizes the missing
information or the a priori indetermination. Unfortunately, the loge partitioning is
hampered by its numerical complexity since its requires the evaluation of the
N-particle density distribution and therefore its applications have been limited to
very few systems. The dynamical system theory [29, 30] is another well established
mathematical theory enabling the partition of space in adjacent volumes. Its advan-
tage is that it is applied to the gradient vector field of a local function of the only
variable r, the so-called potential function which contains the relevant chemical or
physical information. The gradient dynamical system analysis has been introduced
in Chemical Physics by Richard Bader [31] in the framework of the Atoms in
Molecules (AIM) theory. Bader has shown that the gradient vector field of the
one electron density distribution function enables to partition the space occupied
by a molecule in atomic basins limited by zero-flux surfaces who enjoy the prop-
erty of being quantum open system. The AIM theory recovers the chemical picture
of the molecule made of atoms but the partition does not explicitly reveal a sub-
structure corresponding to the cores and the valence shell of the atoms. The ELF
[32] approach [33, 34] belongs to the same type of methodology, it attempts to
overcome the conceptual limits of the topological analysis of the sole electron
density. This method has been applied to study the bonding in molecules, com-
plexes, and solids as well as reaction mechanisms.

The present paper intends to provide a pedagogical presentation of the method
with a particular emphasis on its relations with the Lewis’s model.

The Lewis’s Model and Quantum Mechanics

Lewis imagined the cubic model of the atom in 1902. In this model an atomic
kernel bearing a positive charge is surrounded by n�8 static electrons occu-
pying n vertexes of a cube. In the 1916 article [35], he uses the cubic atoms as
parts of the molecular building set and the rules of the game are given by six
postulates:

1. ‘‘In every atom is an essential kernel which remains unaltered in all ordinary
chemical changes and which possesses an excess of positive charges corre-
sponding in number to the ordinal number of the group in the periodic table
to which the element belongs.

2. The atom is composed of the kernel and an outer atom or shell, which, in the
case of the neutral atom, contains negative electrons equal in number to the
excess of positive charges of the kernel, but the number of electrons in the shell
may vary during chemical change between 0 and 8.

3. The atom tends to hold an even number of electrons in the shell, and especially
to hold eight electrons which are normally arranged symmetrically at the eight
corners of a cube.
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4. Two atomic shells are mutually interpenetrable.
5. Electrons may ordinarily pass with readiness from one position in the outer

shell to another. Nevertheless they are held in position by more or less rigid
constraints, and these positions and the magnitude of the constraints are deter-
mined by the nature of the atom and of such other atoms as are combined with
it.

6. Electric forces between particles which are very close together do not obey the
simple law of inverse squares which holds at greater distances.’’

Though Quantum Mechanics enables to reject the idea of static electrons, a
modern translation of the five first Lewis’s postulates (the role of the sixth postulate
is to explain the uncomfortable idea of static electrons) can be given by an ad hoc
partition of the geometrical position space in adjacent non overlapping volumes
called hereafter basins in the following way:

1. The space occupied by an atom (with Z>2) is divided into an inner region the
core basin encompassing the nucleus and an external region, the atomic valence
shell, gathering its valence basins which may extend to infinity.

2. A valence basin may be shared by the valence shells of several atoms.
3. There is a high probability to find Z � nv electrons within a core basin

where nv is the ordinal number of the group of the periodic table to which
the element belongs (in other words the conventional number of valence
electrons).

4. There is a high probability to find an even number of electrons in a valence
basin belonging to a closed shell system.

The validity of these propositions relies on the one hand upon our ability to carry
out the electron count for an arbitrary partition and on the other hand on the
availability of a reliable partitioning technique.

The Basin Population Operator

The electron count over a basin, say OA, is performed with the help of the
population operator introduced by Diner and Claverie [36] (Eq. (1)) where
N denotes the total number of electrons. The population operator of the union
of two basins OA and OB is given by Eq. (2) which is not the sum
N̂NðOAÞ þ N̂NðOBÞ. Considering the whole space, i.e.

S
A OA one gets the sum rule

(Eq. (3)).

N̂NðOAÞ ¼
XN

i

ŷyðriÞ with ŷyðriÞ
ŷyðriÞ ¼ 1 ri 2 OA

ŷyðriÞ ¼ 0 ri 2=OA

�
ð1Þ

N̂NðOA [ OBÞ ¼
XN

i

ŷyðriÞ with ŷyðriÞ
ŷyðriÞ ¼ 1 ri 2 OA [ OB

ŷyðriÞ ¼ 0 ri 2=OA [ OB

�
ð2Þ

N̂N
[
A

OA

 !
¼ N ð3Þ
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The eigenvalues, NðOAÞ, of N̂NðOAÞ belong to the series of integer 0; . . . ;N and
represent all the accessible numbers of electrons within OA. As a consequence of
Eq. (3), the eigenvalues of the population operators of different basins are corre-
lated since they also obey the closure relation (Eq. (4)).X

A

NðOAÞ ¼ N ð4Þ

The expectation values of the population operators, �NNðOAÞ (Eq. (5)), can be
expressed in terms of the volume integral of the one electron probability distribu-
tion over the basins. They are real numbers and can be understood as the average of
the measurements of the electron numbers NðOAÞ. They also fulfill a closure rela-
tion, i.e. Eq. (6).

�NNðOAÞ ¼ hCjN̂NðOAÞjCi ¼
ð
OA

�ðrÞdr ð5Þ

X
A

�NNðOAÞ ¼ N ð6Þ

In fact, these eigenvalues and expectation values are determined simultaneously.
Each set of eigenvalues defines an accessible chemical electronic structure and the
expectation values �NNðOAÞ can be therefore interpreted as weighted averages of
resonance structures.

The closure relation of the basin population operators enables to carry out a
statistical analysis of the basins populations through the definition of a covariance
matrix [37]. The covariance operator is a matrix operator whose elements are
deduced from the classical expression of the covariance (Eq. (7)).

ccovcovðOA;OBÞ ¼ N̂NðOAÞN̂NðOBÞ � �NNðOAÞ�NNðOBÞ ð7Þ

The covariance matrix element expectation values are the difference between the
actual pair populations �PPðOA;OBÞ and their ‘‘classical’’ analogs �NNðOAÞ�NNðOBÞ or
�NNðOAÞð�NNðOAÞ � 1Þ in the case of the diagonal elements given by Eq. (8).

hccovcovðOA;OAÞi ¼ �PPðOA;OAÞ � �NNðOAÞð�NNðOAÞ � 1Þ
hccovcovðOA;OBÞi ¼ �PPðOA;OBÞ � �NNðOAÞ�NNðOBÞ

ð8Þ

The diagonal elements of the covariance matrix (the variances), are often noted
�2ð�NNÞ as they classically represent the square of the standard deviation �.

In the case of open shell systems it is also very interesting to localize
the unpaired electron by calculating the integrated spin density over localization
basins.

Although, the topological representation proposes a rather satisfactory inter-
pretation of the bonding, reliable descriptions in terms of superposition of chemical
structures are often very helpful, at least, as explanatory models. As it has been
proposed in two previous papers [37, 38], the data provided by the topological
analysis can be used to build such models and also to discuss their ability to
describe the distribution of the electrons.
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The Topological Partition

To be faithful to the Lewis’s picture, the partition we are considering should yield
electron counts in the core and valence basins in agreement with prescriptions
made above: the population of the core basins should be close to Z � nv and its
variance should be small, that of valence basins should be either close to an
even number with a small variance or to an odd number with a variance of the
order of 1. Table 1 reports the core radii (rc), the core populations (�NNc), and
their variance (�2ð�NNcÞ) of the 2nd, 3rd, and 4th periods main group elements calcu-
lated by variance minimization as well as from ELF. For all atoms, except gallium,
both the variance minimization and ELF yield core populations close to the
expectations. As an example one can consider the Mg atom for which Fig. 1 dis-
plays the variance of �NNðRÞ, the integrated density in a sphere of radius R
centered on the nucleus, as a function of �NNðRÞ. The two minima are found for
�NNðRÞ ’ 2 and �NNðRÞ ’ 10 which correspond to the occupancy of the K and K þ L
shells.

Table 1. Core radius rc (a.u.), core populations �NNc, and variance of core populations �2ð�NNcÞ
calculated from the variance minimization and ELF

Variance minimization ELF

rc
�NNc �2ð�NNcÞ rc

�NNc �2ð�NNcÞ

Li 1.573 2.011 0.065 1.610 2.019 0.066

Be 0.998 2.009 0.103 1.015 2.018 0.103

B 0.716 2.015 0.155 0.688 1.986 0.157

C 0.550 2.017 0.206 0.586 2.073 0.211

N 0.433 2.007 0.265 0.472 2.100 0.275

O 0.358 1.996 0.308 0.410 2.166 0.334

F 0.302 1.977 0.348 0.364 2.240 0.400

Ne 0.259 1.953 0.383 0.295 2.151 0.408

Na 2.310 10.071 0.167 2.261 10.053 0.167

Mg 1.711 10.075 0.283 1.662 10.032 0.285

Al 1.412 10.074 0.337 1.426 10.092 0.337

Si 1.194 10.067 0.397 1.155 9.993 0.402

P 1.030 10.057 0.457 1.027 10.050 0.458

S 0.907 10.051 0.506 0.878 9.957 0.512

Cl 0.809 10.046 0.554 0.800 10.010 0.554

Ar 0.730 10.044 0.598 0.736 10.070 0.598

K 3.365 18.139 0.214 3.293 18.114 0.214

Ca 2.595 18.155 0.382 2.491 18.065 0.387

Ga 1.581 27.820 0.888

Ge 1.643 28.509 0.874 1.371 27.673 1.004

As 1.413 28.340 0.980 1.278 27.812 1.041

Se 1.269 28.277 1.065 1.143 27.663 1.147

Br 1.157 28.264 1.108 1.119 28.051 1.118

Kr 1.064 28.187 1.217 1.012 27.838 1.244
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The minimization of the variance with respect to the core volume implies that
the variational equation (Eq. (9)) should be satisfied. This equation can be written
in terms of a surface integral (Eq. (10)) in which �ðrÞ is a scalar function for which
the bounding surface S is a zero flux surface. In the theory of dynamical systems
[29, 30], a volume limited by such a surface is the basin of an attractor of the
gradient vector field of the potential function �ðrÞ.

��2ð�NNÞ
�V

¼ 0 ð9Þ

��2ð�NNÞ
�V

¼
þ

S

n � r�ðrÞds ¼ 0 ð10Þ

In principle the �ðrÞ function can be evaluated from the expression of �2ð�NNÞ,
however it is more efficient to use an analytical function such as ELF able to do the
same job.

The ELF Function

The electron localization function ELF [32] is basically the ratio of the Laplacian
of the conditional probability DðrÞ ¼ r2

rP��
condðr; r0Þjr0¼r by the electron density

raised at the power 5=3, D0ðrÞ. Different physical interpretations have been pro-
posed of the ELF formula in order to justify the denominator. Savin et al. [39–41]
have remarked that the Laplacian of the conditional probability is the difference
of the definite positive kinetic energy densities of the actual system and of an
equivalent density model system in which the antisymmetry is switched off, that
is the excess kinetic energy due to the Pauli principle whereas the denominator is the

Fig. 1. �2 vs. �NNðRÞ for Mg
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same quantity calculated for homogeneous electron gas reference. The Lorentzian
form (Eq. (11)) enables to confine the ELF values in the [1, 0] interval. The
function tends to 1 where parallel spins are highly improbable (mostly regions
dominated by a single opposite spin pair) and to zero in regions where there is a
high probability of same spin pairs.

�ðrÞ ¼ 1

1 þ DðrÞ
D0ðrÞ

� �2
ð11Þ

Another local descriptor of the pair formation in the sense of Lewis’s model, the
so-called spin pair composition, has recently been introduced on the basis of the
two particle probability density analysis [42]. This function is defined as the ratio
of same spin and opposite spin pair functions integrated over a sampling volume
around the reference point (Eq. (12) with Eq. (13)).

c�ðrÞ ¼ �NNðrÞ�2=3
�NNkðrÞ
�NN?ðrÞ

ð12Þ

�NNðrÞ ¼
ð

V

�ðr1Þdr1

�NNkðrÞ ¼
ð

V

ð
V

���ðr1; r2Þdr1dr2 þ
ð

V

ð
V

���ðr1; r2Þdr1dr2

�NN?ðrÞ ¼
ð

V

ð
V

���ðr1; r2Þdr1dr2 þ
ð

V

ð
V

���ðr1; r2Þdr1dr2

ð13Þ

In these equations �ðrÞ is the spinless one electron density distribution function,
and ���0 ðr1; r2Þ the ��0 component of the two particle distribution �ðr1; r2Þ. It has
been shown that ELF is an excellent approximation to this function once put in
the Lorentzian form �ðrÞ ¼ ð1 þ c2

�ðrÞÞ
�1

. ELF has the advantage that it can
be expressed analytically in terms of basis functions in all practical cases where
the wave function is expressed in terms of orbitals, whereas the spin pair composi-
tion must be calculated numerically.

A Sketch of the ELF Analysis

As already mentioned, the gradient dynamical system theory appears to be the
convenient mathematical tool to perform a partition of the space in regions domi-
nated by a single electron pair or by a single (unpaired) electron. A glossary of the
mathematical vocabulary used hereafter is given in Appendix A. The principles of
the method are the following: consider a local function, say �ðrÞ called potential
function in the dynamical system theory context, which carries the chemical
information; its gradient r�ðrÞ forms a vector field bounded on R3. The r�ðrÞ
field determines two types of points of R3, on the one hand the wandering points
at which r�ðrwÞ 6¼ 0 and on the other hand the critical points which correspond
to r�ðrcÞ ¼ 0. Each critical point is characterized by its index IP which is the
number of positive eigenvalues of the second derivative (Hessian) matrix of
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�ðrÞ. The number and type of critical points obeys the Poincaré-Hopf formula, i.e.
Eq. (14) with �ðMÞ¼ 1 for a molecule and 0 for a periodic system. The
potential function implicitly depends upon a set of parameters, called control
space. The formal analogy with a velocity field (i.e. r�ðrÞ ¼ dr=dt) enables to
build trajectories by integrating over the time variable. Each trajectory starts in
the neighborhood of a point (or set of points) for which r�ðrÞ ¼ 0 called the
�-limit and ends in the neighborhood of another point (or set of points) for
r�ðrÞ ¼ 0 called the !-limit. Except for asymptotic behaviors, the � and !-limits
are critical points. The set of trajectories having a given critical point as !-limit
is called the stable manifold of this critical point whereas its unstable manifold is
the set of trajectory for which it is a �-limit. The stable manifold of a critical point
of index 0 (a local maximum or attractor) is the basin of the attractor, that of a
critical point of index larger than 0 is a separatrix: it is the boundary between
basins. X

P

ð�1ÞIP ¼ �ðMÞ ð14Þ

The topological partition of the ELF gradient field [34, 43] yield basins of
attractors which can be thought as corresponding to bonds and lone pairs. As the
ELF function is totally symmetrical the attractors can be single points (general
case), circles (off axis attractors of linear molecules), or spheres (off center attrac-
tors of atoms) according to their location and to the molecular symmetry. In a
molecule one can find two types of basins. On the one hand are core basins
surrounding nuclei with atomic number Z>2 and labeled C(A) where A is the
atomic symbol of the element and on the other hand are the valence basins. The
valence basins are characterized by the number of atomic valence shells to which
they participate, or in other words by the number of core basins with which they
share a boundary. This number is called the synaptic order. Thus, there are mono-
synaptic, disynaptic, trisynaptic basins, and so on. Monosynaptic basins, labeled
V(A), correspond to the lone pairs of the Lewis model, and polysynaptic basins
to the shared pairs of the Lewis model. In particular, disynaptic basins, labeled
V(A, X) correspond to two-centre bonds, trisynaptic basins, labeled V(A, X, Y) to
three-centre bonds, and so on. The valence shell of a molecule is the union of its
valence basins. As hydrogen nuclei are located within the valence shell they are
counted as a formal core in the synaptic order because hydrogen atoms have a
valence shell. For example, the valence basin accounting for a C–H bond is labeled
V(C, H) and called protonated disynaptic. The valence shell of an atom, say A, in a
molecule is the union of the valence basins whose label lists contain the element
symbol A.

In the Born-Oppenheimer approximation, the wave function and, therefore, the
electron localization function parametrically depend upon the set of nuclear coor-
dinates which forms the control space. Thom’s catastrophe theory [1] provides a
convenient mathematical model for the study of the bonding evolution with
respect to changes of the control space parameters [44]. Within the framework
provided by the ELF analysis, a chemical reaction is viewed as a series of
topological changes occurring along the reaction path. The parameters defining
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the reaction pathway (such as the nuclear coordinates and the electronic state)
constitute the control space. The evolution of the bonding along the reaction
path is modeled by the changes in the number and synaptic orders of the
valence basins. Each structure is only possible for values of the control parameters
belonging to definite ranges, in other words to subsets called structural stability
domains. Along the reaction path the chemical systems goes from a structural
stability domain to another by means of bifurcation catastrophes occurring at
the turning points. Each catastrophe transforms the overall topology in such a
way as the Poincaré-Hopf relation is fulfilled. This technique shows how the bonds
are formed and broken and also emphasize the importance of the geometrical
constraints in chemical reactions. For example, the breaking of a covalent bond
is characterized by the increase of the number of basins through a cusp catastrophe
which transforms the attractor of the V(A, B) disynaptic basin into a critical
point of index one and the two attractors of the new monosynaptic basins V(A)
and V(B).

The concept of localization domain has been introduced [45] for graphical
purposes and also in order to define a hierarchy of the localization basins which
can be related to chemical properties. A localization domain is a volume limited by
one or more closed isosurfaces �ðrÞ ¼ f . A localization domain surrounds at least
one attractor, in this case it is called irreducible. If it contains more than one
attractor it is reducible. Except for atoms and linear molecules, the irreducible
domains are always filled volumes whereas the reducible ones can be either filled
volumes, hollow volumes, or donuts. Upon the increase of the value of �ðrÞ defin-
ing the bounding isosurface, a reducible domain splits into several domains each
containing less attractors than the parent domain. The reduction of localization
occurs at turning points which are critical points of index 1 located on the separ-
atrix of two basins involved in the parent domain. Ordering these turning points
(localization nodes) by increasing �ðrÞ enables to build tree-diagrams reflecting the
hierarchy of the basins [46]. A core basin is counted in the synaptic order of
valence basins if there exist a value of the localization function which gives rise
to an hollow volume localization domain (containing the considered valence basin
attractors) with the core domain in its hole. Figure 2 displays the localization
domains of methanol corresponding to isosurfaces defined by three values of
�ðrÞ. For �ðrÞ<0:1, there is an unique parent domain encompassing all the at-
tractors, the successive bifurcations occur at 0.11, 0.13, 0.53, 0.71, 0.805, and
0.905 as represented by the reduction of localization diagram in Fig. 3.

Fig. 2. �ðrÞ ¼ 0:5, 0:75, and 0.85 localization domains of CH3OH
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Bonding Classification Criteria

The interactions between molecules have been classified by R. Bader into closed-
shell and shared-electron interactions [31]. The closed-shell type includes interac-
tions related with a chemical reaction such as ionic bonds as well as weaker
interactions due to electrostatic or dispersion forces. The shared-electron interac-
tion includes covalent, dative, and metallic bonding as subclasses. The criteria
retained by Bader to discuss the type of bonding are on the one hand the occur-
rence of a bond path between two atomic attractors and on the other hand the sign
of the Laplacian of the density at the bond critical point [31]. In the AIM approach
a bond path is defined as the unstable manifold (see Appendix A) of a critical point
of index 1, the so-called bond critical point, which is a saddle point located at the
boundary of two atomic basins. The bond path is formed by two trajectories linking
this critical point to the attractors of the two atomic basins. A negative value of
r2�ðrcÞ is the signature of the shared interaction whereas a positive value indicates
a closed shell interaction. The density of energy at the bond critical point has been
further introduced by Cremer and Kraka [47, 48] in order to refine the discussion of
the bonding. More recently, Bianchi et al. [49] have proposed a set of indicators
enabling an assignment in terms of the different subclasses of the shared and
closed-shell interactions. In addition to these rather qualitative criteria, quantitative
information is provided by the atomic basin populations and by the related covar-
iance analysis [50] interpreted in terms of ‘‘topological bond orders’’ [51, 52] or of
delocalization indexes [53–55].

In the ELF gradient field analysis, the shared and unshared interactions are
unambiguously identified by an unique topological criterion: the presence or the
absence of a di- or polysynaptic basin [34, 45]. This argument is fully consistent
with the Lewis’s picture since a polysynaptic basin is the common part of several
atomic valence shells. As already discussed above, the quantitative analysis pro-
vides basin populations and related covariance matrices which can be exploited to
reinterpret the bonding in terms of averaged mesomeric structures. The subclasses
of both interactions are determined by studying the topological behaviour of the

Fig. 3. Reduction of localization diagram of CH3OH
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gradient field along the dissociation reaction pathway [44]. For example, breaking
a covalent bond increases the number of basins by one because the disynaptic basin
encountered at equilibrium geometry is split into two monosynaptic ones. In the
case of conventional multiple bonds, the bond multiplicity is not automatically
correlated to an equal multiplicity of the disynaptic basins. On the one hand, the
location of the attractors should be consistent with the point symmetry and there-
fore the disynaptic basins multiplicity can be explained by symmetry considera-
tions rather than by chemical arguments. On the other hand, conventional multiple
bonds are often limit resonance structures (for example jC�Oj) which are seldom
the dominant ones. In a recent paper [56] D. B. Chesnut has discussed the bond
multiplicity in the AIM and ELF framework and concluded that the measures are
dependent on the nature of the AB pair.

Moreover, the ELF analysis provides topological arguments enabling to decide
whether an interaction is chemical or not [44]. The gradient field of the potential
function of a complex formed from neutral species at infinite separation is either
the addition of those of its moieties or something different. In the former case
where the number and the synaptic orders of the basins is the same at any distances
less or equal to the equilibrium distance, the interaction is not the consequence of a
chemical reaction and therefore it cannot be defined as chemical. This situation
occurs for van der Waals and electrostatic interactions including weak and medium
hydrogen bonds [57]. In the case of a chemical interaction at least the synaptic
order of one basin changes. The use of reduction of localization diagrams is the
convenient tool enabling to decide whether a system can be considered as a single
chemical entity. For example, the reduction of localization diagram of the (FH)2

complex displayed in Fig. 4 clearly shows that the first bifurcation splits the parent
domain in two reducible domains corresponding to the two interacting hydrogen
fluoride molecules.

The Electron Shared Interactions

The electron shared interaction includes the covalent, dative, and metallic bondings
as subclasses. The presence of a di- or polysynaptic basin can be interpreted as
arising from the dominant mesomeric structure and, with this respect, the quanti-
tative analysis provides additional pieces of information on the delocalization and
on weights of ionic contributions.

Fig. 4. Reduction of localization diagram of HF2

The Topological Analysis of the Electron Localization Function 867



Covalent Bonds

The C–C bond of ethane is an archetype of covalent bond, the topology of the ELF
gradient field of this molecule is represented in Fig. 5 for two representative
values of the C–C internuclear distance, namely 3.0 Å and the equilibrium distance
1.53 Å. When the covalent bond is formed, the two monosynaptic basins repre-
sented in light grey merge into a single disynaptic one in grey. The interpretation in
terms of catastrophe theory indicates that the bond formation (or dissociation) can
be modeled by a cusp catastrophe [44].

Figure 6 displays the localization domains of four unsaturated hydrocarbons:
ethylene, acetylene, allene, and benzene. The conventional double bond of ethyl-
ene gives rise to two disynaptic basins on both sides of the �h symmetry plane
whereas for acetylene the axial symmetry yields a unique disynaptic basin the
attractor of which is degenerated on a circle perpendicular to the C1 axis. In
ethylene and in allene, the V(C, C) and V(C, H) are arranged in staggered position
in order to minimize the Pauli repulsion between them in agreement with the
VSEPR expectation. In benzene, there are six V(C, C) basins with a shape inter-
mediate between those of a typical single bond (ethane, for example) and of a
double bond. Conventional C¼N double bonds, as in CH2NH (Fig. 7), give
rise to two basins whereas a single bean shaped disynaptic basin arises for the

Fig. 5. �ðrÞ ¼ 0:8 localization domains of C2H6; left R¼ 3.0 Å, right R¼ 1.530 Å

Fig. 6. �ðrÞ ¼ 0:8 localization domains of C2H2 (top left), C2H4 (top right), C3H4 (bottom left), and

C6H6 (bottom right)
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isoelectronic CH2O displayed in Fig. 8. These different features can be interpreted
in the light of the population analysis reported in Table 2. On the one hand, the
V(C, X) basin populations decrease as the electronegativity difference increases

Fig. 7. �ðrÞ ¼ 0:8 localization domains of CH3NH2 (left) and CH2NH (right)

Fig. 8. �ðrÞ ¼ 0:8 localization domains of CH2O

Table 2. Basin populations (�NN) and variance of basin populations (�2) of V(C, X), V(C, H), V(X, H)

disynaptic and V(X) monosynaptic basins; (2) indicates the multiplicity of the basin, (t) a circular

attractor

V(C, X) V(C, H) V(X, H) V(X)

�NN �2 �NN �2 �NN �2 �NN �2

C2H6 1.81 0.97 2.0 0.64

C2H4 1.69(2) 0.95 2.11 0.64

C2H2 5.14(t) 1.38 2.32 0.70

C3H4 1.85(2) 0.99 2.08 0.67

C6H6 2.76 1.30 2.15 0.66

CH3NH2 1.62 0.94 2.02 0.64 1.96 0.77 2.17 0.97

CH2NH 1.47(2) 0.90 2.13 0.63 1.95 0.74 2.64 1.07

HCN 4.30(t) 1.55 2.29 0.68 3.22 1.17

CH3OH 1.24 0.80 2.04 0.63 1.70 0.79 2.36(2) 1.08

CH2O 2.42 1.32 2.14 0.60 2.54(2) 1.12
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which corresponds to a charge transfer towards both V(C, H) and V(X) basins. In
terms of mesomery, as expected the weight of the ionic structure C�–X� increases
which is consistent with the behavior of the V(X) population and with Sanderson’s
lone pair bond weakening effect whereas the C�–X� accounts for that of V(C, H).
The same trend is observed in the case of formal multiple CX bonds. On the other
hand, for a given X, the increase of V(C, H) and V(X) basin populations with the
bond multiplicity is achieved at the expend of the V(C, X) populations.

Classical multiple bonds mostly occur between elements belonging to the sec-
ond period whereas elements of higher periods seems to prefer ‘‘slipped bonds’’ or
multicenter bonds. In orbital related pictures, this behavior is explained by the
hybridization defect [58]. Gr€uutzmacher and F€aassler have shown that the ELF
analysis enables to distinguish between slipped and unslipped bonds [59], for
Si2H4 the lowest energy isomer has a trans bent structure involving such a slipped
bond. The comparative study of the Si2H2 isomers carried out by D. B. Chesnut
[60] concludes that the H-bridged structures are more stable than the trans bent
one. Figure 9 displays the localization domains of the trans bent structures of Si2H4

and Si2H2. In Si2H4, the slipped double bond corresponds to two disynaptic basins
V(Si, Si) with a population �NN ¼ 0:85 and two monosynaptic ones with �NN ¼ 1:07,
the variances of these populations are rather large, 0.72 and 0.62 respectively,
which are essentially accounted for by the covariance matrix elements between
them. In Si2H2, there are four monosynaptic basins, each with a population of 1.23
and a monosynaptic one with only �NN ¼ 0:99. Again the covariance analysis shows
a strong delocalization between these basins.

Dative Bonds

The BH3NH3 molecule is the archetype of the dative bond, Fig. 10 displays the
localization domains for two B–N distances corresponding to a dissociated struc-
ture and the equilibrium geometry. When a dative bond is formed, the number of

Fig. 9. �ðrÞ ¼ 0:8 localization domains of Si2H4 (left) and Si2H2 (right)

Fig. 10. �ðrÞ ¼ 0:8 localization domains of BH3NH3, left RBN ¼ 2:5 Å and right RBN ¼ 1:665 Å
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basins is conserved but a monosynaptic basin becomes disynaptic (for a detailed
analysis see Ref. [44]. The formation of the B–N bond does not yield any charge
transfer between the two moieties but a small one within the ammonia subunit from
the V(B, N) basin towards the V(N, H) since the population of the former is 1.93 at
RBN ¼ 2:5 Å against 1.88 at the equilibrium distance.

In transition metal carbonyls, the M–CO bonds are of the dative type but are
characterized by a noticeable electronic transfer from the metal towards the CO
groups. The ELF analysis carried out on the monocarbonyl complexes enabled
Pilmé et al. [61] to draw the following conclusions: The formation of a MCO
complex in which M is a transition metal atom of atomic number Z ¼ 20 þ n obeys
the following rules:

1. Except for n ¼ 4; 5; 9, the spin multiplicity obeys Hund’s rule for the config-
uration [Ar]cnþ2.

2. The averaged local configuration of the core is rather [Ar]cn except for Cr and
Cu for which it is [Ar]cnþ1 as expected from the electronic configuration of the
ground state of the free atom.

3. For n<4 the stable configuration multiplicity is n þ 3. Since the local core
configuration is mostly [Ar]cn, two unpaired electrons can be shared by the
metal valence basin, the ligand, and the metal core. Therefore the total charge
transfer and the V(M) population are both close to 1. Moreover, the integrated
spin densities over V(M) and V(C, M) are also close to 1.

4. For n ¼ 5, the interaction in the ground state can be described in terms of two
resonance structures: one with 4 unpaired electrons in C(Mn), one in V(Mn),
and a pair transferred to the ligand, the other with 6 electrons in C(Mn) and one
in V(Mn).

5. For n>5 the ground state multiplicity is 9 � n. One electron pair can be shared
by the ligand, V(M) and in part C(M). There is no spin density within V(M) and
V(C, M). The charge transfer �q is close to 1 and the V(M) population is less
than 1.

6. For Cr and Cu, the ELF function is spherically symmetrical in the core region of
the metal, only one electron can be distributed over V(M) and V(M, C). The
charge transfer from the metal is maximized for a bent structure.

Multicenter Bonding

Figure 11 displays the localization domains of diborane and of Al2C2H10 two mole-
cules for which a multicenter bonding is evidenced by a polysynaptic basin. In
diborane, the ELF picture is consistent with Pitzer’s proposal [62] of a protonated

Fig. 11. �ðrÞ ¼ 0:8 localization domains of B2H6 (left) and Al2C2H10 (right)
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double bond which is accounted for by two protonated trisynaptic basins. It has
been proposed [63] to generalize the agostic interaction concept initially intro-
duced by Brookhart and Green [64] to name an unusual interaction between a
CH group and a transition metal to bonds involving protonated polysynaptic basins.
This definition therefore applies not only for transition metal complexes such as
RuClCH2CH3(PH3)2 [63] or for diborane in which there is a double agostic bond
but also to the protonation of two centre bonds.

The normal coordination numbers of carbon are 2, 3, and 4 for sp, sp2 and sp3

carbons. However, in Al2(CH3)6 the sp3 carbons of the bridging methyl groups are
pentacoordinated. The ELF localization domains of the Al2H4(CH3)2 model mole-
cule represented in Fig. 11 show that the carbon of the methyl groups are penta-
coordinated thanks to a V(Al, C, Al) trisynaptic basin. The existence of planar
tetracoordinated carbon (ptC) has been predicted by Hoffman et al. [65] and
observed afterward mainly by Erker’s group [66]. Several bonding mechanisms
have been proposed on the basis of the MO theory. The ELF analysis concludes
that ptCs are sp2 carbons which form two centre bonds and one three centre
bond evidenced by a trisynaptic basin. In the ZcCl2C4H2VCl2 model compound,
the carbon atoms of the butadiyne fragment are involved in three trisynaptic
V(Zr, C, C) basins.

Molina and Dobado [67] have recently reinvestigated the 3c–4e bond concept
within the AIM and ELF frameworks. They did not find any trisynaptic basins but
showed a noticeable electron delocalization between ligands in linear structures
such as ClF�

2 . This electron delocalization is weaker in T-shaped molecules and
negligible in bipyramidal compounds. However, as the linear structures investi-
gated in this paper are centro symmetric anions the origin of the delocalization
should be due to the symmetry of the charge distribution rather than to a bonding
effect. For these reasons, we think that the 3c–4e bond concept is misleading and
therefore that it is not a useful concept to describe the bonding in molecules [68].

Shared Interactions in Solids

In crystalline systems the shared interaction involves covalent and metallic solids.
Figure 12 displays the localization domains of an insulator and of a conductor, the
silicon and lithium crystals respectively. The bonding in silicon is characterized by
well localized V(Si, Si) disynaptic basins with populations close to 2e. The value of
ELF at the V(Si, Si) attractors is 0.959 whereas it is 0.64 at the index 1 critical point
located at the boundary of two V(Si, Si) basins. In diamond, the corresponding

Fig. 12. Localization domains of Si (left, �ðrÞ ¼ 0:85) and Li (right �ðrÞ ¼ 0:59) cells
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ELF values are very similar: respectively 0.944 and 0.666. Metallic bonds give rise
to quite different patterns. On the one hand, the difference between the ELF values
at the valence attractors and at the index 1 critical points is very small and therefore
the localization domain corresponding to a value just below that of the latter
critical points forms a tridimensional network. Small deviations from the jellium
model, the presence of shallow maxima in the valence regions, explain this behav-
ior [69]: these maxima remove the structural unstability of the homogeneous elec-
tron gas approximation, ELF being constant, any point is a degenerate critical
point. On the other hand, the integrated density over a valence basin is always less
than 2, in the case of lithium the populations of the main valence basins are close to
1, which supports the interstitial-electron model proposed by Mo Li and Goddard
[70]. Moreover, metallic bonding often involves multicenter bonding evidenced by
polysynaptic basins. In lithium for example, the attractors are located at the center
of the faces which corresponds to a synaptic order equal to six.

Unshared Interactions

Two types of bonding mechanisms belong to the unshared interaction: the ionic
bonding and bonds by delocalization such as the 3e–2c ones encountered in radical
anions and cations.

Ionic Bonds

Figure 13 displays the localization domains of LiH for two internuclear distances
corresponding on each side of the covalent ionic transition. As expected from
chemical intuition, in the formation of an ionic bond the monosynaptic domain
of the less electronegative moiety disappears because its density is transferred to
the monosynaptic basin of the other subunit. In our example, the transition occurs
at RLiH ¼ 2:436 Å.

Bonding by Delocalization

This type of bonding is characterized by large covariance matrix elements between
either monosynaptic basins or even between core basins. The three electron bond in
radical anions has been investigated in details by Fourré et al. [71]. The investi-
gated systems are of the HnXYH�

m type with X, Y¼Cl, S, P, Si, F, O, N, C and
n;m ¼ 0–2. The relaxed anions are characterized by the absence of a V(X, X)

Fig. 13. �ðrÞ ¼ 0:8 localization domains of LiH (left, RLiH ¼ 4:0 Å, right, RLiH ¼ 1:588 Å)
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monosynaptic basin and by the transfer of the extra electron initially in the V(X, Y)
basin of the neutral molecule into the V(X) and V(Y) monosynaptic basins. The spin
density is localized within these basins and at every intermolecular separation the
covariance between them is larger than 0.25, the lower bound at infinite separation.

Another interesting example of bonding by delocalization is provided by bime-
tallic complexes. The nature of the chemical bond in M2(formamidinate)4 com-
plexes (M¼Nb, Mo, Tc, Ru, Rh, and Pd) with different nominal bond orders
ranging from 0 to 5 is a puzzling topical example which has been rationalized
so far in terms of overlaps of the metal d orbitals giving rise to �, �, and � bonding
and antibonding orbitals. In their ground state, the M2L4 complexes are diamag-
netic and have an approximate D4h symmetry. The structural properties of these
second row transition metal dimer complexes can be quantitatively predicted using
advanced quantum chemical methodologies [72–74].

A topological study of these systems has been recently published by Llusar
et al. [75]. The ELF topological analysis shows a disynaptic V(M, M) basin for Ru
and Rh, a group of four disynaptic V(M, M) basins for Nb and Mo, and nothing for
Tc and Pd. The complexes of these two latter elements are those with the shortest
(Tc) and the largest (Pd) intermetallic distances. The V(M, M) attractor multiplicity
seems to be a consequence of the Pauli repulsion between the metallic cores which
mostly depends upon the internuclear distance. Going from large to short distances
there are four regimes with 0, 1, 4 and 0 attractors. The covariance matrix elements
between the two C(M) basin populations accounts for about 80% of C(M) variance.
The value of this index can be rationalized by simple resonance concepts. The
proposed resonance structures for each metal dimer together with their weight
factors calculated from the populations of the core metal basins, C(M), and their
covariance values are given in Table 3. The large electron fluctuation which occurs
between the two metallic cores can be interpreted in terms of simple resonance
arguments, exemplified here for the Mo complex. Because the metal dimer is in a
closed-shell singlet state, there is no spin polarization, and each metallic core
should be considered as a local closed-shell subsystem whose orbitals fulfill the
C4v point group symmetry requirements. The Mo core population is close to 40e�

with a covariance of 1.255, and as a consequence, an average of four out of the six

Table 3. M2(HNCHNH)4; resonance structures and estimated weights

Resonance structure Weight

Nb M([Kr]�4)–M([Kr]�2)$M([Kr]�2)–M([Kr]�4) 1

Mo M([Kr]�4)–M([Kr]�2�2)$M([Kr]�2�2)–M([Kr]�4) 0.75

M([Kr]�4�2)–M([Kr]�2)$M([Kr]�2)–M([Kr]�4�2) 0.125

M([Kr]�4�2)–M([Kr]�2)$M([Kr]�2)–M([Kr]�4�2) 0.125

Tc M([Kr]�4�2)–M([Kr]�2�2)$M([Kr]�2�2)–M([Kr]�4�2) 1

Ru M([Kr]�4�2)–M([Kr]�4�2)$M([Kr]�4�2)–M([Kr]�4�2) 0.875

M([Kr]�4)–M([Kr]�4�2�2)$M([Kr]�4�2�2)–M([Kr]�4) 0.125

Rh M([Kr]�4)–M([Kr]�4�2�2)$M([Kr]�4�2�2)–M([Kr]�4) 0.125

M([Kr]�4�2�2)–M([Kr]�4�2�2) 0.875

Pd M([Kr]�4�2�2)–M([Kr]�4�2�2) 1
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electrons formally considered as valence according to the MO theory should now
be incorporated into the core. Following the traditional greek characters usually
used to described the quadruple metal–metal bonding MOs (�2�4�2), the follow-
ing core configurations are compatible with the molecular symmetry: [Kr]�4,
[Kr]�2�2, and [Kr]�4�2 and [Kr]�2, [Kr]�4�2 and [Kr]�2. A resonance structure be-
tween the first two configurations, Mo([Kr]�4)–Mo([Kr]�2�2)$Mo([Kr]�2�2)–
Mo([Kr]�4), corresponds to an average core population of 40e� with a variance
of zero.

Procovalent Bonds and Charge-shift Bonding

The study of electron density in depleted homopolar chemical bonds [76] led to
introduce the concept of protocovalent bond. A protocovalent bond is characterized
by two monosynaptic basins on the internuclear axis and by an ELF value at the
index 1 critical point between them close to the attractor value, just like in the case
of the formation or of the dissociation of a covalent bond displayed in the left part
of Fig. 5. Figure 14 displays the localization domains of F2 and H2O2 which are
typical example of protocovalent bonding. The populations of the monosynaptic
basins on the internuclear axis are very low (0.14 for F2 and 0.29 for H2O2) and
there are large covariance matrix elements between the monosynaptic basins of the
two atoms involved in the protocovalent bond. The charge-shift bond concept
introduced by Shaik et al. [77] in the context of the valence-bond theory explains
the stabilization of this kind of bonds which is a manifestation of lone pair bond
weakening. Protocovalent bonds are encountered in most homopolar A–B bonds in
which both the A and B atoms have lone pairs [76, 78].

Conclusions

In this paper we have attempted to show that the ELF topological analysis provides
a mathematical bridge between Quantum Mechanics and Chemistry which relies
on the one hand on the statistical interpretation and on the other hand on the theory
of dynamical system. This approach shares the dynamical system theory as com-
mon mathematical method with the Atoms in Molecules theory, the difference
being the nature of the potential function and therefore the nature of the investi-
gated properties. The AIM theory is rightly claimed to be rooted in Physics rather
than in Chemistry and its partition scheme aims accordingly to define open quan-
tum systems within which the virial theorem holds. Moreover, AIM does not intent
to define the valence shell of an atom in a molecule and does not associate any
mathematical object to bonds and lone pairs. The goal of the ELF partition is

Fig. 14. Localization domains of F2 (left, �ðrÞ ¼ 0:6) and H2O2 (right, �ðrÞ ¼ 0:73)
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clearly to define basins of attractors corresponding to chemical concepts, core and
valence shells, bonds and lone pairs. This is achieved at the expend of the physical
meaning of the basins which is lost. Another advantage of the ELF approach is that
it provides pictures of the bonding in molecules which materialize the electron
domains of the VSEPR model [8] and in particular to evidence the lone pairs [79].
With respect to this model, the ELF analysis had helped to refine its conclusions, in
particular for the so-called hypervalent molecules [80], and to extend its applica-
bility to the d0 molecules of period 4 metals by considering basins of the core
external shell [81].

Reactivity is another field to which the ELF approach provides useful pieces
of information. For example, it enables to predict protonation sites [82] and to
recover the Holleman rules of aromatic substitution [83–85] as well as to define
aromaticity scales [86–88]. Moreover, as already mentioned, the use of catastrophe
theory [44] has been applied to elucidate reaction mechanisms such as proton
transfers [89–91], electron harpooning [92], isomerization [93], hydrogen inter-
calations [94, 95], or cycloadditions [96, 97]. Finally, it is worth noting that the
graphical possibility of this approach has many possible applications for chemical
education.

Mathematical Glossary

The aim of this subsection is to introduce the topological vocabulary and to provide
a set of mathematical definitions.

Dynamical system. A dynamical system is a vector field of class C1 bound on a
manifold M. Such a vector field has no discontinuities. To any point m belonging to
the M manifold corresponds one vector XðmÞ and only one. The solutions of the
system of equations dm=dt ¼ XðmÞ are locally unique and therefore there is only
one trajectory passing through m. The trajectories are determined by integrating
dm=dt ¼ XðmÞ with respect to the fictitious time variable t. The limit sets in M of
mðtÞ for t $ �1 are called the � and ! limit set.

Gradient dynamical system. The vector field of a gradient dynamical system is
the gradient of a function called potential function, i.e.: XðmÞ ¼ rVðmÞ.
Critical points. The critical points (or limit points) of a dynamical system are the
points of M for which XðmcÞ ¼ 0. A critical point is either an � or an ! limit of a
trajectory. The set of points of M by which are built trajectories having mc as !
limit is called the stable manifold of mc, the unstable manifold of mc is the set for
which mc is an � limit. The dimension of the unstable manifold is the index of the
critical point. The set of the critical points of a dynamical system satisfies the
Poincaré-Hopf formula (Eq. (15)) where IP is the index of the critical point P
and �ðMÞ the Euler characteristic of the manifold. A critical point of index zero
is an attractor of the dynamical system. The stable manifold of an attractor is
called the basin of the attractor. The stable manifold of a critical point of index
greater than zero is a separatrix, it is the border of two or more basins. The index of
a critical point mc of a gradient dynamical system is the number of positive eigen-
values of the matrix of the second derivatives of the potential function at mc. In this
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case, a critical point is said to be hyperbolic if none of the eigenvalues is zero.X
P

ð�1ÞIP ¼ �ðMÞ ð15Þ

Domain. If any two points a and b of a set MA can be connected by a path
belonging to MA, the set MA is a domain.

Computational Methods

The ab initio calculations of molecules have been performed at the hybrid Hartree-
Fock density functional B3LYP level [98–101] with the Gaussian 98 software
[102]. The geometries have been optimized with the 6-311G(2d, 2p) basis set
[103–107]. The calculations of crystalline solids have been carried out with the
CRYSTAL98 software [108] and the ELF function evaluated with TOPOND98
[109]. The analysis of the ELF function has been carried out with the TopMoD
program developed in the Laboratoire de Chimie Théorique de l’Université Pierre
et Marie Curie [110, 111], and the ELF isosurfaces have been visualized with the
Amira 3.0 software [112].
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[24] Daudel R (1971) In: Daudel R, Pullman A (eds) Aspects de la Chimie quantique Contempor-

aine. Editions du Centre National de la Recherche Scientifique, Paris, p 70

[25] Aslangul C, Constanciel R, Daudel R, Kottis P (1972) In: L€oowdin PO (ed) Advances in

Quantum Chemistry. Academic Press, New York, vol 6, pp 93–141

[26] Daudel R (1974) Quantum Theory of The Chemical Bond. Reidel, Dordrecht

[27] Daudel R (1992) In: Encyclopedia of Physical Science and Technology. Academic Press,

New York, vol 13, pp 629–640

[28] Shannon CE, Weaver W (1949) The Mathematical Theory of Communication. The University

of Illinois Press, Urbana

[29] Abraham RH, Shaw CD (1992) Dynamics: The Geometry of Behavior. Addison Wesley

[30] Abraham RH, Marsden JE (1994) Foundations of Mechanics. Addison Wesley

[31] Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Oxford Univ Press, Oxford

[32] Becke AD, Edgecombe KE (1990) J Chem Phys 92: 5397

[33] H€aaussermann U, Wengert S, Nesper R (1994) Angew Chem Int Ed Engl 33: 2073

[34] Silvi B, Savin A (1994) Nature 371: 683

[35] Lewis GN (1916) J Am Chem Soc 38: 762

[36] Diner S, Claverie P (1976) In: Chalvet O, Daudel R, Diner S, Malrieu JP (eds) Localization and

Delocalization in Quantum Chemistry. Reidel, Dordrecht, vol II, pp 395–448

[37] Silvi B (2004) Phys Chem Chem Phys 6: 256

[38] Lepetit C, Silvi B, Chauvin R (2003) J Phys Chem A 107: 464

[39] Savin A, Becke AD, Flad J, Nesper R, Preuss H, von Schnering HG (1991) Angew Chem Int

Ed Engl 30: 409

[40] Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, von Schnering HG (1992) Angew Chem Int

Ed Engl 31: 187

[41] Savin A, Nesper R, Wengert S, F€aassler TF (1997) Angew Chem Int Ed Engl 36: 1809

[42] Silvi B (2003) J Phys Chem A 107: 3081

[43] H€aaussermann U, Wengert S, Nesper R (1994) Angew Chem Int Ed Engl 33: 2069

[44] Krokidis X, Noury S, Silvi B (1997) J Phys Chem A 101: 7277

[45] Savin A, Silvi B, Colonna F (1996) Can J Chem 74: 1088

[46] Calatayud M, Andrés J, Beltrán A, Silvi B (2001) Theoret Chem Acc 105: 299

[47] Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23: 627

[48] Cremer D, Kraka E (1983) Croat Chem Acta 57: 1259

[49] Bianchi R, Gervasio G, Marabello D (2000) Inorg Chem 39: 2360

[50] Bader RFW, Stephens ME (1975) J Am Chem Soc 97: 7391

[51] Cioslowski J, Mixon ST (1991) J Am Chem Soc 113: 4142

[52] �AAngyán JG, Loos M, Mayer I (1994) J Phys Chem 98: 5244

[53] Fradera X, Austen MA, Bader RFW (1998) J Phys Chem A 103: 304

[54] Fradera X, Poater J, Simon S, Duran M, Solá M (2002) Theor Chem Acc 108: 214
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